Thermoelectric
Thermoelectric generators (TEGs) can be manufactured in printed form due to recent developments in materials research and novel architectures. With the use of thermoelectric inks made of organic semiconductors or nanocomposites, TEGs can be mass produced at low cost in a roll-to-roll process. The efficiency with which a TEG can convert thermal energy into electrical energy depends largely on the Seebeck coefficient, electrical conductivity and thermal conductivity of the printed layers. Based on the many years of experience of the Lichttechnisches Institut (LTI) in the field of organic semiconductors and printed electronics, research activities have been extended in the direction of printed thermoelectrics.
Key technology here is the development of novel printable materials with high thermoelectric efficiency. Due to the scalability of the manufacturing process, it is possible, among other things, to produce large-area TEGs that enable the use of waste heat on a larger scale.
In this context, the thermoelectrics group conducts research on novel thermoelectric materials, TEG device architectures and integrated TEG systems. Design and simulation of thermoelectric components are the focus of the group.
Publications
Mallick, M. M.; Franke, L.; Hussein, M.; Rösch, A. G.; Long, Z.; Eggeler, Y. M.; Lemmer, U.
2024. Small Science, 4 (11), 2400257. doi:10.1002/smsc.202400257
Franke, L.; Rösch, A. G.; Khan, M. I.; Zhang, Q.; Long, Z.; Brunetti, I.; Joglar, M. N.; Lara, A. M.; Simão, C. D.; Geßwein, H.; Nefedov, A.; Eggeler, Y. M.; Lemmer, U.; Mallick, M. M.
2024. Advanced Functional Materials, 34 (40), Art.-Nr.: 2403646. doi:10.1002/adfm.202403646
Mallick, M. M.; Franke, L.; Rösch, A. G.; Hussein, M.; Long, Z.; Eggeler, Y. M.; Lemmer, U.
2024. Advanced Functional Materials, 34 (20), Art.-Nr.: 2301681. doi:10.1002/adfm.202301681
Rösch, A. G.; Franke, L.; Mallick, M. M.; Lemmer, U.
2023. Energy Conversion and Management, 279, Art.-Nr.: 116776. doi:10.1016/j.enconman.2023.116776
Sarbajna, A.; Rösch, A. G.; Franke, L.; Lemmer, U.; Mallick, M. M.
2022. Advanced Engineering Materials, 25 (2), Art.Nr. 2200980. doi:10.1002/adem.202200980
Mallick, M. M.; Franke, L.; Rösch, A. G.; Geßwein, H.; Eggeler, Y. M.; Lemmer, U.
2022. ACS Omega, 7 (12), 10695–10700. doi:10.1021/acsomega.2c00412
Mallick, M. M.; Sarbajna, A.; Rösch, A. G.; Franke, L.; Geßwein, H.; Eggeler, Y. M.; Lemmer, U.
2022. Applied materials today, 26, Art.Nr. 101269. doi:10.1016/j.apmt.2021.101269
Mallick, M. M.; Franke, L.; Rösch, A. G.; Geßwein, H.; Long, Z.; Eggeler, Y. M.; Lemmer, U.
2022. Advanced Science, 9 (31), Art.Nr.: 2202411. doi:10.1002/advs.202202411
Mallick, M. M.; Franke, L.; Rösch, A. G.; Ahmad, S.; Geßwein, H.; Eggeler, Y. M.; Rohde, M.; Lemmer, U.
2021. ACS applied materials & interfaces, 13 (51), 61386–61395. doi:10.1021/acsami.1c13526
Rösch, A. G.; Gall, A.; Aslan, S.; Hecht, M.; Franke, L.; Mallick, M. M.; Penth, L.; Bahro, D.; Friderich, D.; Lemmer, U.
2021. npj flexible electronics, 5 (1), Article: 1. doi:10.1038/s41528-020-00098-1
Rösch, A. G.; Giunta, F.; Mallick, M. M.; Franke, L.; Gall, A.; Aghassi-Hagmann, J.; Schmalian, J.; Lemmer, U.
2021. Advanced theory and simulations, 4 (6), Art.-Nr.: 2000284. doi:10.1002/adts.202000284
Mallick, M. M.; Franke, L.; Rösch, A. G.; Lemmer, U.
2021. ACS energy letters, 6, 85–91. doi:10.1021/acsenergylett.0c02159
Mallick, M. M.; Rösch, A. G.; Franke, L.; Ahmed, S.; Gall, A.; Geßwein, H.; Aghassi, J.; Lemmer, U.
2020. ACS applied materials & interfaces, 12 (17), 19655–19663. doi:10.1021/acsami.0c01676
Mallick, M. M.; Rösch, A. G.; Franke, L.; Gall, A.; Ahmad, S.; Gesswein, H.; Mazilkin, A.; Kuebel, C.; Lemmer, U.
2020. Journal of materials chemistry / A, 8 (32), 16366–16375. doi:10.1039/D0TA05859A