Übersicht über die Vorlesung Solarenergie

- 1. Einleitung
- 2. Die Sonne als Energiequelle
- 3. Halbleiterphysikalische Grundlagen
- 4. Kristalline pn-Solarzellen
- 5. Elektrische Eigenschaften
- 6. Optimierung von Si-Solarzellen
- 7. Anorganische Dünnschichtsolarzellen
- 8. Third Generation Photovoltaics
- 9. PV-Systemtechnik
 - 9.1 Kennlinienfelder
 - 9.2 Erweiterung des Ersatzschaltbildes
 - 9.3 Solarmodule
 - 9.4 Photovoltaische Anwendungen
 - 9.4 Spannungsanpassung (fortgesetzt)
 - 9.5 MPP-Tracking
 - 9.6 Speicherung
 - 9.7 Wechselrichter
 - 9.8 PV-Kraftwerke

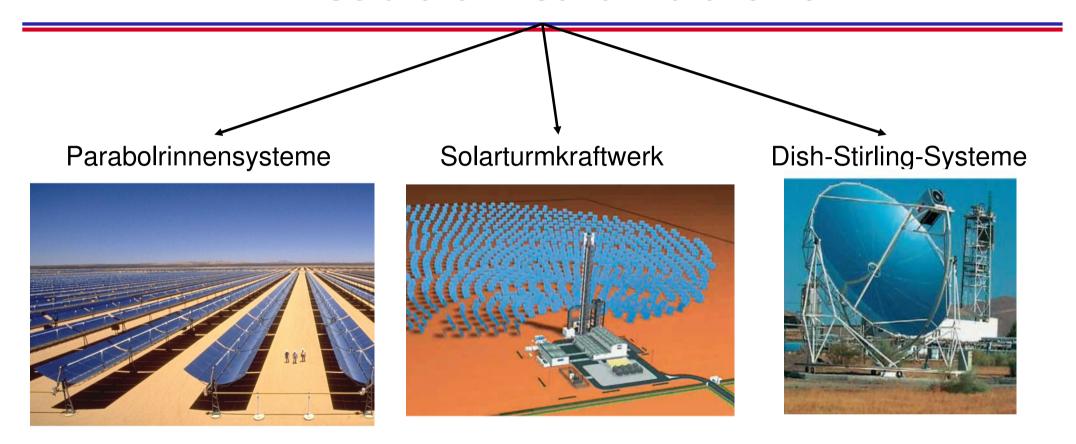
10. Solarthermische Kraftwerke

- 10.1 Einleitung
- 10.2 Konzentration solarer Strahlung
- 10.3 Absorberrohre
- 10.4 Parabolrinnenkraftwerke
- 10.5 Solare Turmkraftwerke
- 10.6 Dish-Stirling-Systeme
- 10.7 Aufwindkraftwerke

Solarthermische Kraftwerke

...Dank an Prof. Robert Pitz-Paal für zahlreiche Folien und Bilder!

Der Autor


Robert Pitz-Paal, geb. 1963 in Kleve, Physik-Diplom 1988 an der Universität München, promoviert 1992 an der Universität Bochum. Seit 1993 in der Solarforschung am Deutschen Zentrum für Luftund Raumfahrt in Köln-Porz, seit 2002 Abteilungsleiter Solarforschung, seit 2003 Professor an der RWTH Aachen.

Anschrift

Prof. Dr.-Ing. Robert Pitz-Paal, Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik, Solarforschung, Linder Höhe, 51147 Köln. Robert.Pitz-Paal@dlr.de

www.bine.info/pdf/infoplus/FachartikelPitzPaalDLR.pdf

Solarthermische Kraftwerke

- -für den effizienten Betrieb einer Wärmekraftmaschine sind Temperaturen > 300 ℃ erforderlich
- alle solarthermischen Kraftwerke erfordern eine ausreichend starke direkte Sonneneinstrahlung und nachfolgende Konzentration (keine Nutzung der diffusen Strahlung)
- wirtschaftlicher Betrieb nur zwischen Äquator und 35 ° nördlicher (südlicher) Breite

SEGS: Impressionen ...

Solar Electric Generating System 1..9

SEGS: Eine Erfolgsgeschichte in Südkalifornien

1 SEGS Solar Electric Generating Systems

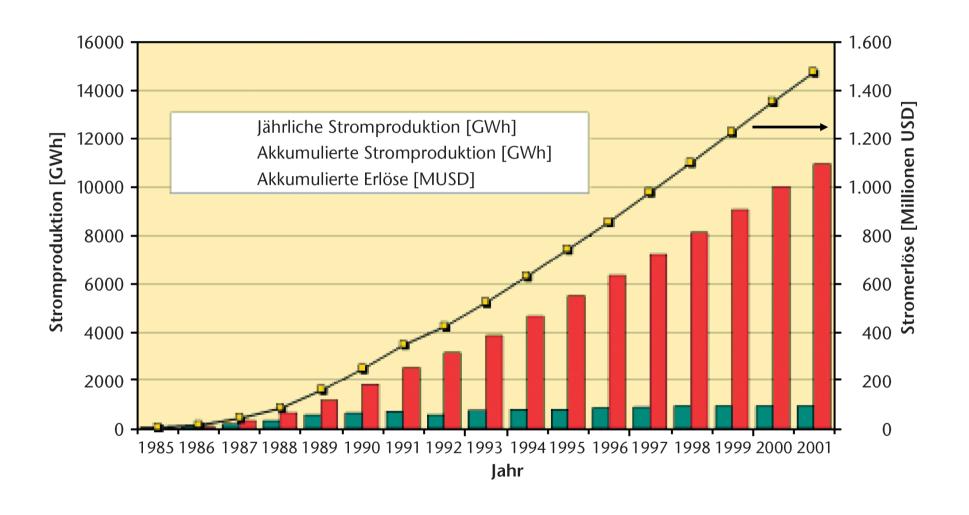
Parabolrinnenkollektoren konzentrieren die solare Strahlung und erzeugen Hochtemperaturwärme (400 °C). Das Foto zeigt einen Ausschnitt aus dem größten Solarkraftwerk der Welt in Kalifornien.

SEGS: Fakten...

SEGS Anlage	- 1	II	Ш	IV	V	VI	VII	VIII	IX
Jahr der Inbetriebnahme	1985	1986	1987	1987	1988	1989	1989	1990	1991
Nettoleistung [MW]	13.8	30	30	30	30	30	30	80	80
Aperturfläche Solarfeld [1000m²]	83	190	230	230	251	188	194	464	484
Solarfeld Auslasstemperatur [°C]	307	321	349	349	349	391	391	391	391
Turbinenwirkungsgrad [%]									
Solar-Betrieb	31,5ª	29,4 ^b	30,6	30,6	30,6	37,6°	37,6	37,6	37,6
Gas-Betrieb	-	37,3	37,3 ^d	37,3	37,3	39,5	39,5	37,6 ^e	37,6
Dampfparameter am Turbineneinlass imSolar-Betrieb									
Druck [bar]	35,3	27,2	43,5	43,5	43,5	100	100	100	100
Temperatur [°C]	415a	360	327	327	327	371	371	371	371
Jährliche Betriebsdaten (Auslegung)									
Thermischer Wirkungsgrad Solarfeld [%]	35	43	43	43	43	43	43	53	50
Solar-elektrischer Wirkungsgrad, netto [%]	9,3	10,7	10,2	10,2	10,2	12,4	12,3	14,0	13,6
Stromerzeugung, netto [GWh/a]	30,1	80,5	91,3	91,3	99,2	90,9	92,6	252,8	256,1
Gasverbrauch [10 ⁶ m ³ /a]	4,8	9,5	9,6	9,6	10,5	8,1	8,1	24,8	25,2
Spez. Installationskosten [US\$/kW]	4490	3200	3600	3730	4130	3870	3870	2890	3440

a) Dampferzeugung mit Solarenergie, Überhitzung durch Gas (18% des Energieeinsatzes)

- -installierte SEGS Gesamtleistung: 354 MW
- Stromerzeugung: ca. 500 GWh/a (.. entsprach 2003 noch ungefähr der Netzeinspeisung aller Photovoltaik-Anlagen der Welt !!)
- Stromgestehungskosten ca. 12-15 €ct/kWh (..zum Vergleich PV: >30 €ct/kWh)


b) Im Solarbetrieb wird der Dampf mit Solarenergie erzeugt und überhitzt (SEGS II-IX)

c) Turbine mit Zwischenüberhitzung (SEGS VI-IX)

d) Im Gasbetrieb sind die Dampfparameter am Turbinenanlass 105 bar/510 °C (SEGS III-VII)

e) Der Wärmeträgeröl-Erhitzer wurde eingeführt. Dampfparameter sind im Solar- und Gasbetrieb identisch.

SEGS-Fakten

Übersicht über die Vorlesung Solarenergie

- 1. Einleitung
- 2. Die Sonne als Energiequelle
- 3. Halbleiterphysikalische Grundlagen
- 4. Kristalline pn-Solarzellen
- 5. Elektrische Eigenschaften
- 6. Optimierung von Si-Solarzellen
- 7. Anorganische Dünnschichtsolarzellen
- 8. Third Generation Photovoltaics
- 9. PV-Systemtechnik
 - 9.1 Kennlinienfelder
 - 9.2 Erweiterung des Ersatzschaltbildes
 - 9.3 Solarmodule
 - 9.4 Photovoltaische Anwendungen
 - 9.4 Spannungsanpassung (fortgesetzt)
 - 9.5 MPP-Tracking
 - 9.6 Speicherung
 - 9.7 Wechselrichter
 - 9.8 PV-Kraftwerke

10. Solarthermische Kraftwerke

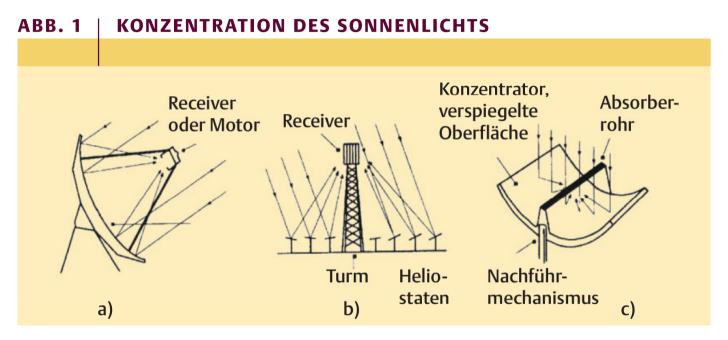
- 10.1 Einleitung
- 10.2 Konzentration solarer Strahlung
- 10.3 Absorberrohre
- 10.4 Parabolrinnenkraftwerke
- 10.5 Solare Turmkraftwerke
- 10.6 Dish-Stirling-Systeme
- 10.7 Aufwindkraftwerke

Maximale Konzentration

Aperturfläche des Konzentrators

$$A_{p} = \frac{\pi}{4} \cdot D^{2} = \pi \cdot (\rho_{R} \cdot \sin \phi_{R})^{2} = \pi \cdot \rho_{R}^{2} \cdot \sin^{2} \phi_{R}$$

Durchmesser des Brennflecks


$$A_B = \frac{\pi}{4} \cdot b_{el}^2 = \frac{\pi}{4} \cdot \rho_R^2 \cdot \alpha_D^2$$

Sonnenwinkel α_D = 32' = 0,00931 rad $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$ $\begin{array}{c} b_{EI} = \rho_s \bullet \alpha_D \\ \hline \\ \phi_R \end{array}$

Konzentration

$$k = \frac{A_p}{A_B} = \frac{4 \cdot \pi \cdot \rho_R^2 \cdot \sin^2 \phi_R}{\pi \cdot \rho_R^2 \cdot \alpha_D^2} = \frac{4 \cdot \sin^2 \phi_R}{\alpha_D^2}; \ k_{\text{max}} = \frac{4}{\alpha_D^2} = \frac{4}{0,00931^2} = 46164$$

Maximale Konzentration

Drei mögliche Varianten zur Konzentration der solaren Strahlung: a) Dish-Konzentrator, b) Zentral-Receiver-System, c) Parabolrinne.

- in der technischen Realisierung:

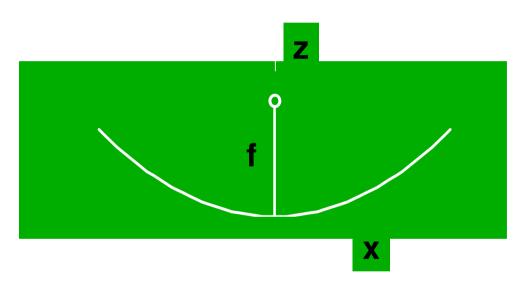
dish: 5000...8000 Turm: 500...1000 Parabolrinne: 100

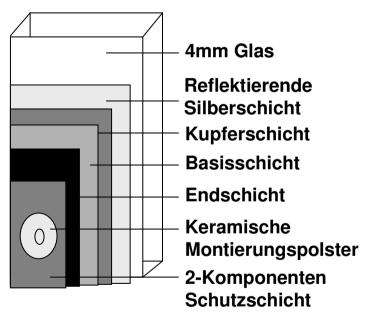
Entwicklungsreihen Kollektor

-Kollektordesign von LUZ

www.solel.com

Aperturweite Kollektorlänge Stützenabstand Refl. Fläche Konzentration


LS-1 LS-2 LS-3 Eurotrough 5.76m 2.5m 5m 5.8m 100-150 m 50 m 48 m 99 m 6 m 12 m 17.3 m 12 m 128m² 235m² 545m² 545m² 61:1 71:1 82:1 82:1


Spiegelfläche

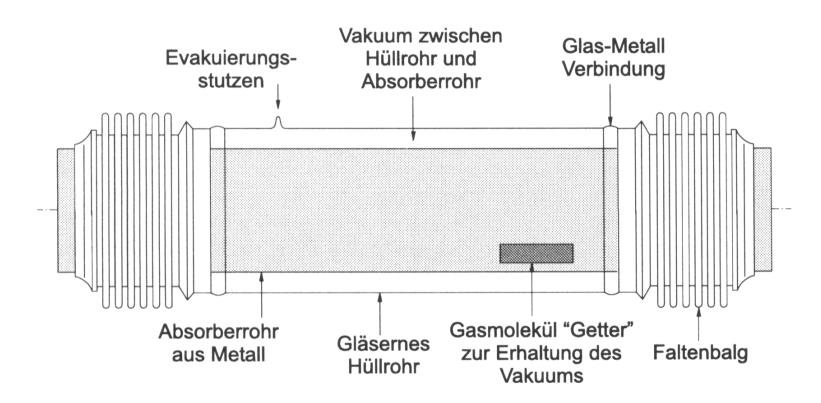
Parabolische Form

Aufbau Spiegel

$$z = x^2 / 4f$$

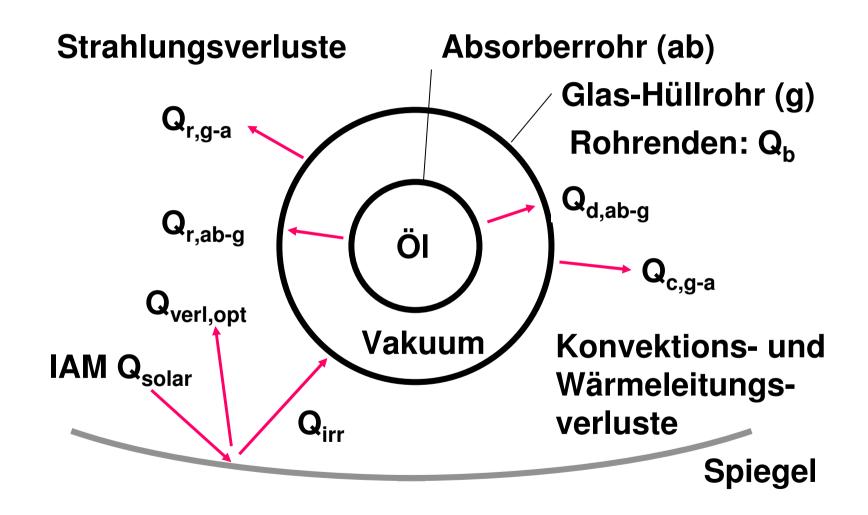
f = 1.71 (Eurotrough)

- einachsige Nachführung des Reflektors

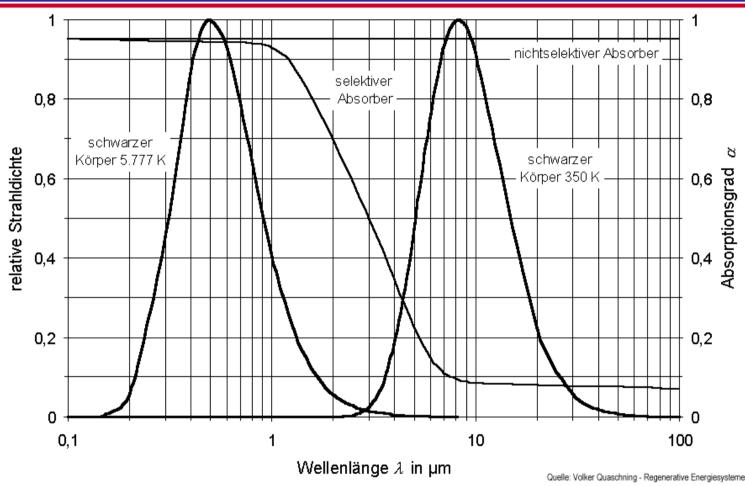

Übersicht über die Vorlesung Solarenergie

- 1. Einleitung
- 2. Die Sonne als Energiequelle
- 3. Halbleiterphysikalische Grundlagen
- 4. Kristalline pn-Solarzellen
- 5. Elektrische Eigenschaften
- 6. Optimierung von Si-Solarzellen
- 7. Anorganische Dünnschichtsolarzellen
- 8. Third Generation Photovoltaics
- 9. PV-Systemtechnik
 - 9.1 Kennlinienfelder
 - 9.2 Erweiterung des Ersatzschaltbildes
 - 9.3 Solarmodule
 - 9.4 Photovoltaische Anwendungen
 - 9.4 Spannungsanpassung (fortgesetzt)
 - 9.5 MPP-Tracking
 - 9.6 Speicherung
 - 9.7 Wechselrichter
 - 9.8 PV-Kraftwerke

10. Solarthermische Kraftwerke

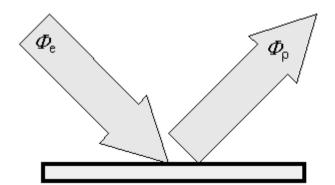

- 10.1 Einleitung
- 10.2 Konzentration solarer Strahlung
- 10.3 Absorberrohre
- 10.4 Parabolrinnenkraftwerke
- 10.5 Solare Turmkraftwerke
- 10.6 Dish-Stirling-Systeme
- 10.7 Aufwindkraftwerke

Absorberrohr


- selektive Beschichtung
- Vakuum zwischen Absorberrohr und äußerem Glasrohr

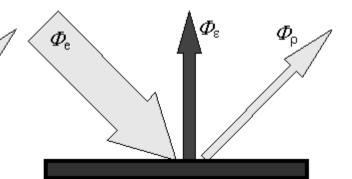
Thermische Verluste am Absorberrohr

_r: Strahlung; _d: Wärmeleitung; _C: Konvektion


Emission und Absorption selektiver und nichtselektiver Absorber

Hauptemission der Sonne – Schwarzer Körper der Temperatur von 5777 K - bei Wellenlängen < 2 μm. Absorptionsgrad sollte dort groß sein!

Hauptemission des Absorbers – Schwarzer Körper der Temperatur von 350 K – im Bereich von 3 – 30 μm. Emissionsgrad = Absorptionsgrad dort möglichst klein!


Selektive Absorberbeschichtung

Spiegelnde Ober flächen reflektieren das Sonnenlicht.

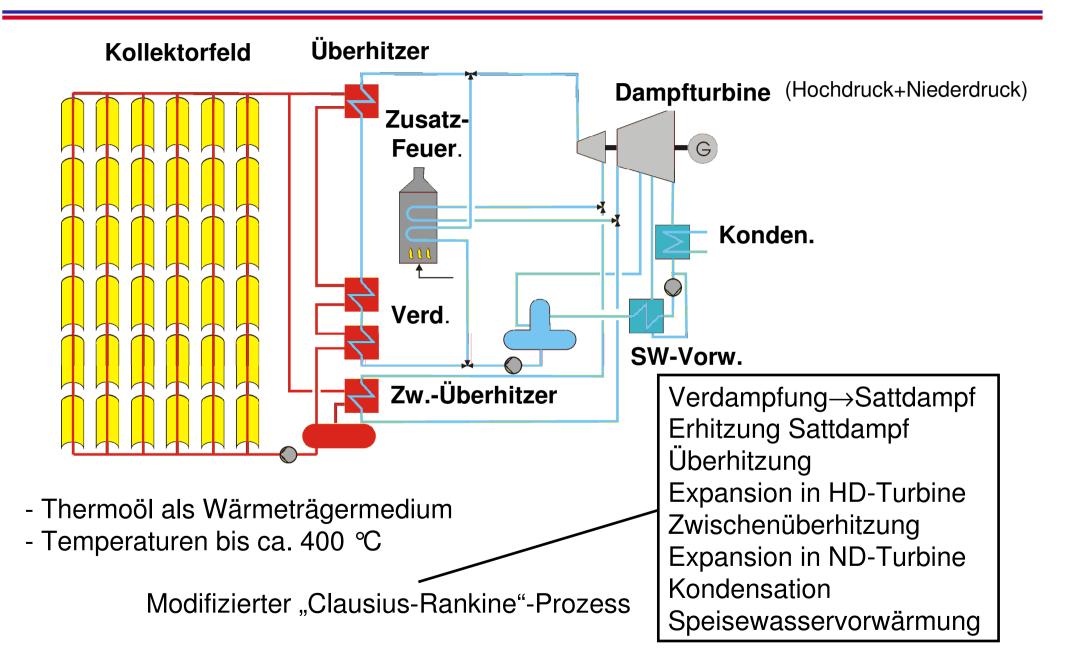
 $\Phi_{\rm e}$

Schwarz lackierte Oberflächen absorbieren die Sonnenstrahlung und geben einen großen Teil als Wärmestrahlung wieder ab.

Selektiv beschichtete Oberflächen absorbieren die Sonnenstrahlung und geben einen geringen Teil als Wärmestrahlung wieder ab.

Quelle: Volker Quaschning - Regenerative Energiesysteme

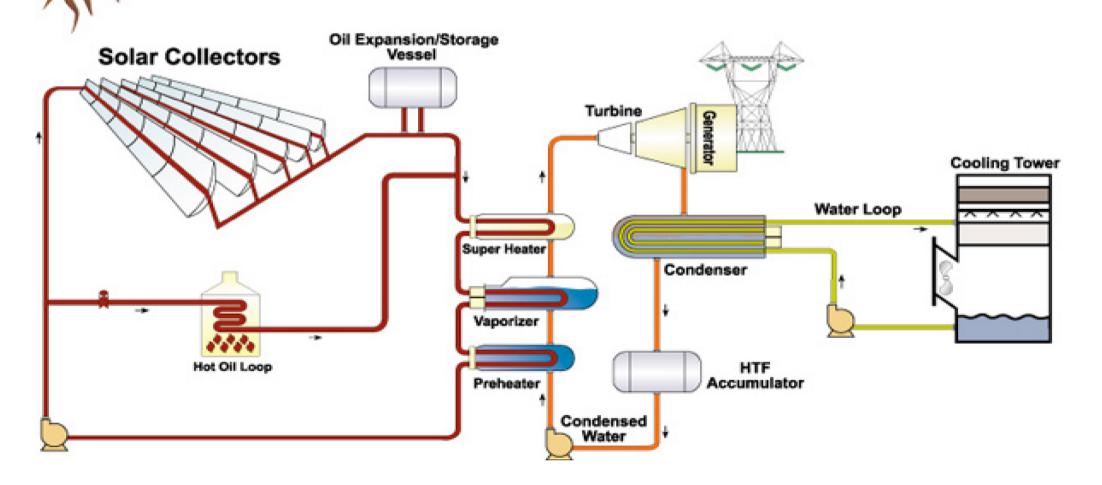
		sichtbar		infrarot			
Material	$\alpha = \varepsilon$	r	ρ	$\alpha = \varepsilon$	τ	ρ	
nicht selektiver Absorber	0,97	0	0,03	0,97	0	0,03	
Schwarzchrom	0,87	0	0,13	0,09	0	0,91	
Schwarznickel	0,88	0	0,12	0,07	0	0,93	
TiNOX (TiN + TiO + TiO ₂)	0,95	0	0,05	0,05	0	0,95	


Übersicht über die Vorlesung Solarenergie

- 1. Einleitung
- 2. Die Sonne als Energiequelle
- 3. Halbleiterphysikalische Grundlagen
- 4. Kristalline pn-Solarzellen
- 5. Elektrische Eigenschaften
- 6. Optimierung von Si-Solarzellen
- 7. Anorganische Dünnschichtsolarzellen
- 8. Third Generation Photovoltaics
- 9. PV-Systemtechnik
 - 9.1 Kennlinienfelder
 - 9.2 Erweiterung des Ersatzschaltbildes
 - 9.3 Solarmodule
 - 9.4 Photovoltaische Anwendungen
 - 9.4 Spannungsanpassung (fortgesetzt)
 - 9.5 MPP-Tracking
 - 9.6 Speicherung
 - 9.7 Wechselrichter
 - 9.8 PV-Kraftwerke

10. Solarthermische Kraftwerke

- 10.1 Einleitung
- 10.2 Konzentration solarer Strahlung
- 10.3 Absorberrohre
- 10.4 Parabolrinnenkraftwerke
- 10.5 Solare Turmkraftwerke
- 10.6 Dish-Stirling-Systeme
- 10.7 Aufwindkraftwerke


Schema Parabolrinnenkraftwerk SEGS

1. Central Solar Power Schematics

thermischer Gesamtwirkungsgrad: < 50 % Wirkungsgrad Stromerzeugung im Dampfkraftwerk: < 45 %

solar-elektrischer Gesamtwirkungsgrad SEGS VIII: 14 %

Zusammenfassung Parabolrinnenkraftwerke²⁰

- 2 Mqm Parabolrinnenfelder
- 354 MW Kapazität installiert
- geringer Materialeinsatz: pro qm Aperturfläche
 18 kg Stahl, 11 kg Glas
- -30-50 % weniger Landbedarf als bei Dish-/ Turmanlagen
- beste solare Wirtschaftlichkeit (10-15 €ct/kWh)
- gute Modularität
- Parabolspiegel und Absorberrohrfertigung in D

Neue Entwicklungen: Bau eines 50 MW Kraftwerkes in Andalusien Bau eines 64 MW Kraftwerkes in Nevada

Das Projekt Andasol

Projektentwicklung der weltgrößten solarthermischen Kraftwerke in Andalusien (Spanien)

www.solarmillenium.de

Das Projekt Andasol

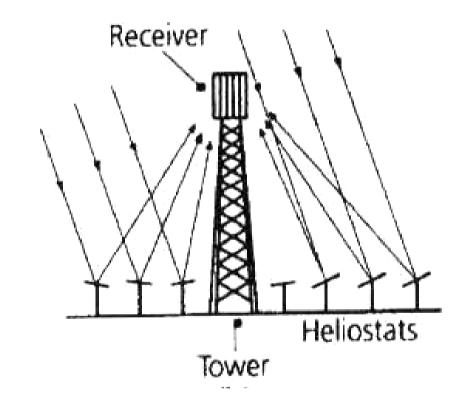
Auf einen Blick: Daten zu einem Andasol-Kraftwerk

Elektrische Leistung	50 Megawatt (MW)
Investitionsvolumen	300 Millionen Euro
Brutto-Stromproduktion	~ 176 Gigawattstunden pro Jahr (GWh/Jahr)
Flächenbedarf	2 km ²
Oberfläche der Solarkollektoren	512.000 m ²
Thermische Speicher	28.500 Tonnen Salz, ausreichend für den Betrieb
	von 7,5 Volllaststunden
Solarenergie	für bis zu 200.000 Menschen
Baubeginn, Bauzeit	Juni 2006; 24 Monate
Zahl der Arbeitskräfte in der Bauphase	bis zu 500
Zahl der Arbeitskräfte im Betrieb	~ 40

Nevada Solar one

Nevada Solar One" parabolic trough power plant located in Boulder City, near Las Vegas, Nevada (USA). This 64 megawatt (MW) power plant is the first large solar thermal power plant to be built in 15 years and it will generate approximately 129 million kilowatt hours (kWh) of solar electricity annually. This will sufficiently cover the power requirements of 15,000 American households. "Nevada Solar One" takes up an area of 1.4 million square meters and is roughly the same size as 212 soccer fields. Acciona Solar Power Inc., a subsidiary of the Spanish Acciona group that is becoming increasingly active within the energy sector, has been responsible for building the plant and will operate it. Solar receivers from SCHOTT, the German technology group, are at the heart of "Nevada Solar One".

Übersicht über die Vorlesung Solarenergie


- 1. Einleitung
- 2. Die Sonne als Energiequelle
- 3. Halbleiterphysikalische Grundlagen
- 4. Kristalline pn-Solarzellen
- 5. Elektrische Eigenschaften
- 6. Optimierung von Si-Solarzellen
- 7. Anorganische Dünnschichtsolarzellen
- 8. Third Generation Photovoltaics
- 9. PV-Systemtechnik
 - 9.1 Kennlinienfelder
 - 9.2 Erweiterung des Ersatzschaltbildes
 - 9.3 Solarmodule
 - 9.4 Photovoltaische Anwendungen
 - 9.4 Spannungsanpassung (fortgesetzt)
 - 9.5 MPP-Tracking
 - 9.6 Speicherung
 - 9.7 Wechselrichter
 - 9.8 PV-Kraftwerke

10. Solarthermische Kraftwerke

- 10.1 Einleitung
- 10.2 Konzentration solarer Strahlung
- 10.3 Absorberrohre
- 10.4 Parabolrinnenkraftwerke
- 10.5 Solare Turmkraftwerke
- 10.6 Dish-Stirling-Systeme
- 10.7 Aufwindkraftwerke

Solare Turmkraftwerke

Turmkraftwerk = Sonne + Heliostaten + Receiver + (Speicher) + konventionelles Wärmekraftwerk

Heliostaten

Entwurf und Planung eines fortschrittlichen Groß-Heliostaten mit Drehstandnachführung und einzelnem, mit Dünnglasspiegeln ausgestattetem 150 m² Metallmembran-Konzentrator zur Verwendung in einem Turm-Solarkraftwerk vom Phoebus-Typ.

Durchmesser 14 m Spiegelfläche 150 m²

Quelle: www.sbp.de

Solare Turmkraftwerke: Wärmeträgermedium?

Temperatur ca. 1000 °C

Konzentration: einige 100 Mal bis 2000 Mal

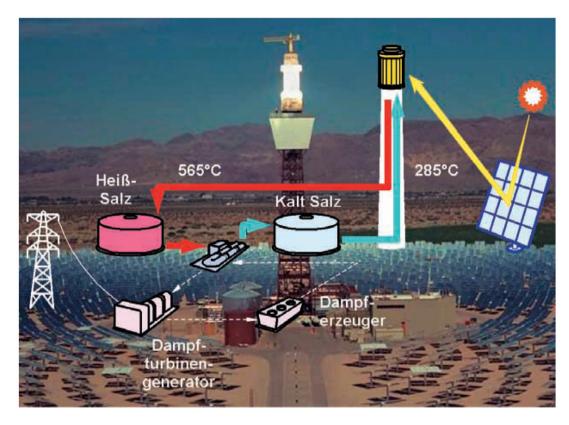
Zweiachsig nachgeführt

Spitzenwirkungsgrade von 18-23%

Wärmeträger:

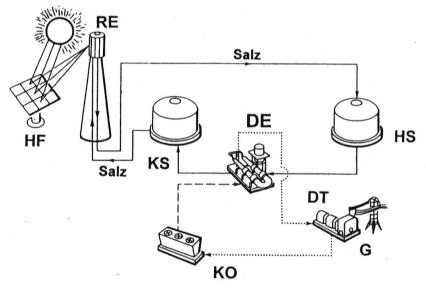
- ⇒ Dampf (Probleme mit schwankender Einstrahlung, Speicherung)
- ⇒ Salzschmelze (kostengünstig, gute Wärmeübertragungseigenschaften, Speicherung; Problem: Schmelzpunkt >100°C, Korrosion)
- ⇒ Luft (Problem: schlechte Wärmeübertragung; aber kostengünstig, geeignet zum Antrieb von Dampf- oder Gasturbinen)

Solare Turmkraftwerke: Wärmeträgermedium?

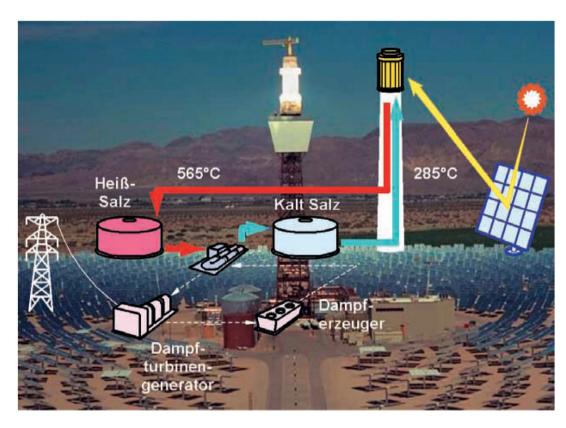

- schwankende Einstrahlung führt zu schnell schwankenden Parametern bei Verwendung von Wasser als Medium
- Alternativen: Salzschmelzen, Natrium, Luft, ...

Projekt	Land	Elektr. Leistung in MW	Wärmeträger	Speichermedium	Inbetrieb- nahme
SSPS	Spanien	0,5	Flüssiges Natrium	Natrium	1981
EURELIOS	Italien	1	Dampf	Nitratsalz/Wasser	1981
SUNSHINE	Japan	1	Dampf	Nitratsalz/Wasser	1981
Solar One U.S.A.	USA	10	Dampf	Öl/Gestein	1982
CESA-1	Spanien	1	Dampf	Nitratsalz	1983
MSEE/Cat B	USA	1	Nitratsalz	Nitratsalz	1983
THEMIS	Frankreich	2,5	Hitech Salz	Hitech Salz	1984
SPP-5	Ukraine	5	Dampf	Wasser/Dampf	1986
TSA	Spanien	1	Luft	keramisches Festbett	1993
Solar Two	USA	10	Nitratsalz	Nitratsalz	1996

Abbildung 1 Übersicht über die bislang weltweit betriebenen Demonstrationsprojekte von Solarturmsystemen

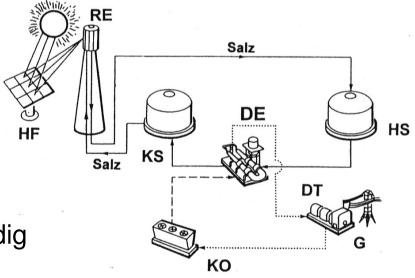

SSPS: Zerstörung des Kraftwerkes durch Natriumbrand

Salzturmkraftwerke



Schema des Salzturmsystems; Hintergrund Demonstrationskraftwerk Solar Two in Kalifornien (Quelle: Sandia National Laboratories)

- Salz wird von 285 °C auf 565 °C erhitzt
- Speicherung möglich
- Betrieb einer Dampfturbine
- Rückführung in Kaltsalztank

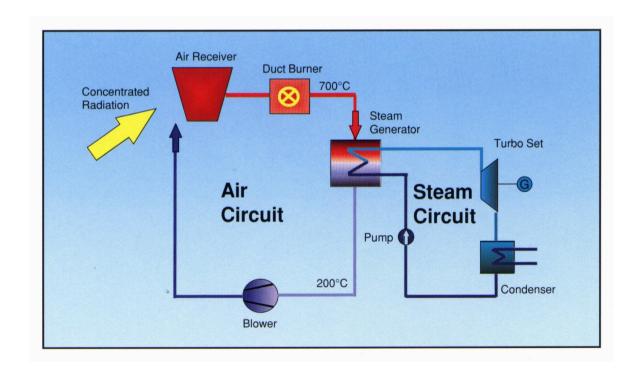


Salzturmkraftwerke

- Schema des Salzturmsystems; Hintergrund Demonstrationskraftwerk Solar Two in Kalifornien (Quelle: Sandia National Laboratories)
- Nachteile/Probleme:
- hohe Schmelzpunkt,
 elektrische Beheizung notwendig
- Korrosion

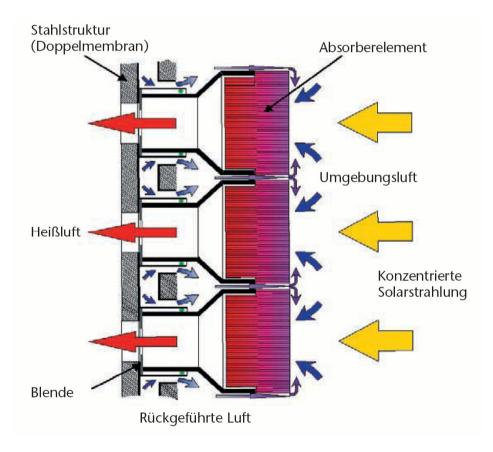
- Salz wird von 285 °C auf 565 °C erhitzt
- Speicherung möglich
- Betrieb einer Dampfturbine
- Rückführung in Kaltsalztank

Luft als Wärmemedium


Vorteile: einfache Handhabbarkeit

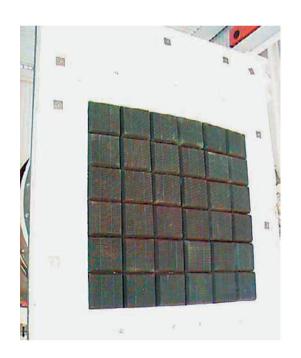
hohe Temperaturen (hohe Wirkungsgrade)

keine Temperaturbeschränkungen


Nachteile: schlechte Wärmeübertragung

Bsp: Phoebus-Konzept

Luftreceiver


Atmosphärischer Luftreceiver "volumetrischer Receiver"

"HITREC"-Luftreceiver

Absorbermaterialien:

Drahtgeflechte, keramische Schäume, keramische/metallische Wabenstrukturen

Receiver SOLAIR 200

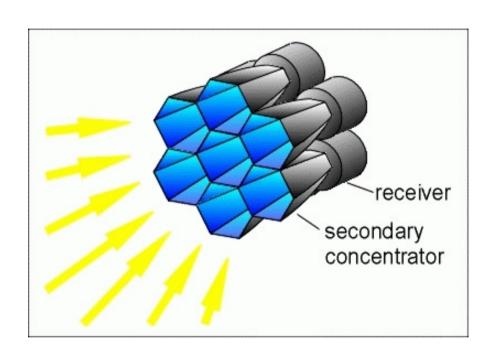
Technisches Verbesserungspotential

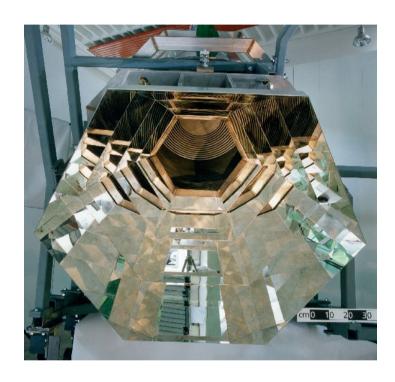
Erhöhte Wirkungsgrade durch:

GuD-Prozeß

dazu erforderlich:

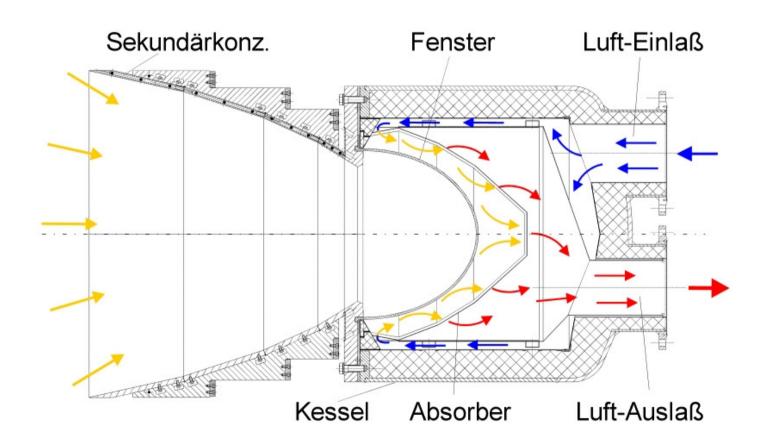
Hohe Temperaturen

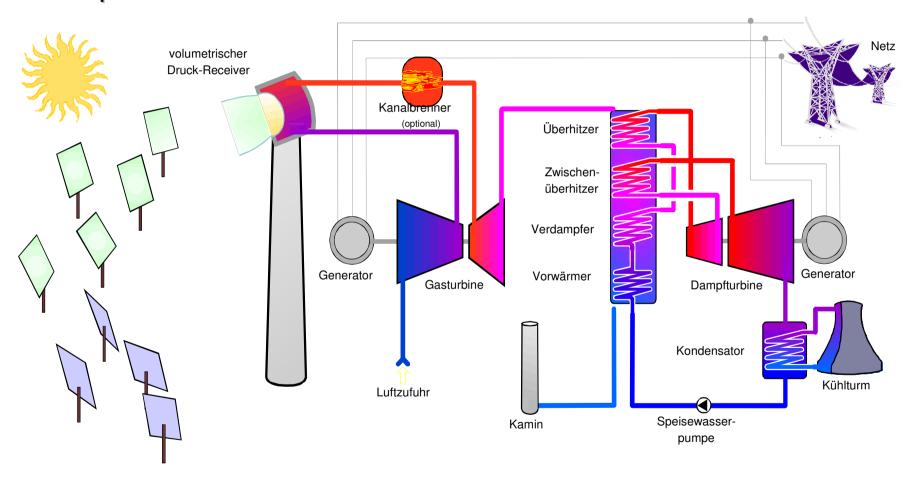

erzeugbar durch:


Hohe Konzentration

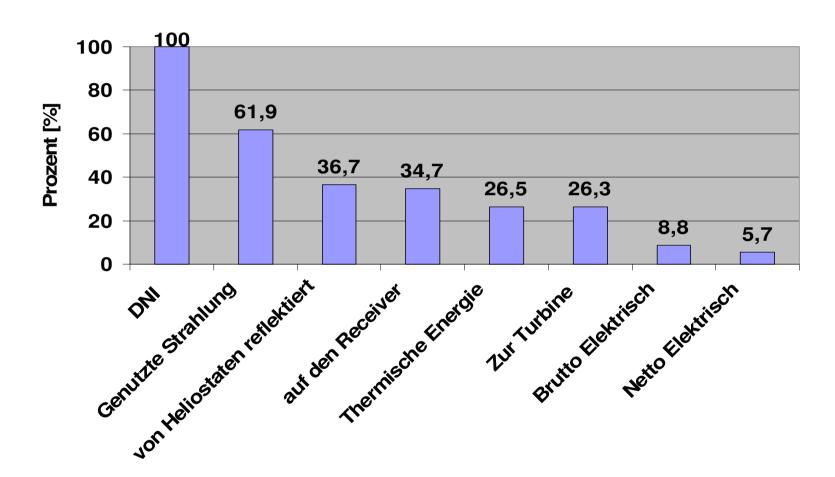
ausserdem erforderlich:

Druckreceiver


Hohe Konzentration durch Sekundärkonzentratoren 12.34


- Reduktion des Brennfleckes auf einen einzelnen Receiver
- wirtschaftlicher, höhere Temperaturen möglich

Druckreceiver mit volumetrischem Absorber


Kraftwerksschaltungen - GuD-Prozess

Prinzip

- Steigerung des Gesamtwirkungsgrades durch zweistufigen Prozess
- Betrieb einer Gasturbine bei hohen Temperaturen
- nachgeschaltetes konventionelles Dampfkraftwerk

Wirkungsgradkette: Bsp. Solar One

Solarturmkraftwerke

Bisher relativ langsame Entwicklung;

Gründe:

- •große Projekte mit hohen Investitionskosten -> finanzielles Risiko
- •Erfordert internationale (politische) Kontakte
- •wenig verlässliche Informationen zu solaren Energieressourcen, Flächenressourcen und Ausbaupotenzialen
- Lohnt sich (noch) nicht

Einspeisevergütung für solarthermisch erzeugten Strom, Spanien 2002 Nutzungsmöglichkeiten: Umstellung der Stromerzeugung im Sonnengürtel; Stromverbund zwischen Nordafrika und Europa

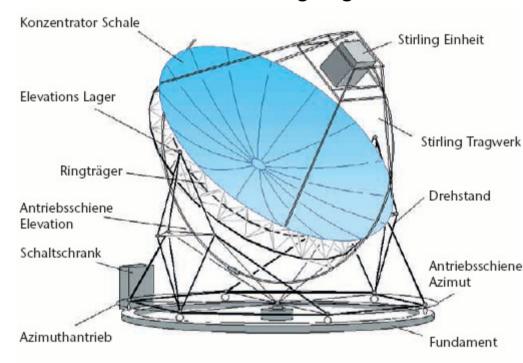
Zusammenfassung Solarturmkraftwerke

- noch keine kommerzielle Reife
- konkurrierende Techniken Salzturm/Luftreceiver
- Ziel GuD-Kombikraftwerke mit Hochtemperaturwärme 1100 °C
- potentiell geringere Stromgestehungskosten durch höhere Wirkungsgrade

In March 2007, Europe's first commercial concentrating solar <u>power</u> tower plant was opened near the sunny southern Spanish city of <u>Seville</u>. The 11 MW plant, known as the <u>PS10 solar power tower</u>, produces electricity with 624 large heliostats. Each of these mirrors has a surface measuring 120 square meters (1,290 square feet) that concentrates the Sun's rays to the top of a 115 meter (377 foot) high tower where a solar receiver and a steam turbine are located.

Übersicht über die Vorlesung Solarenergie

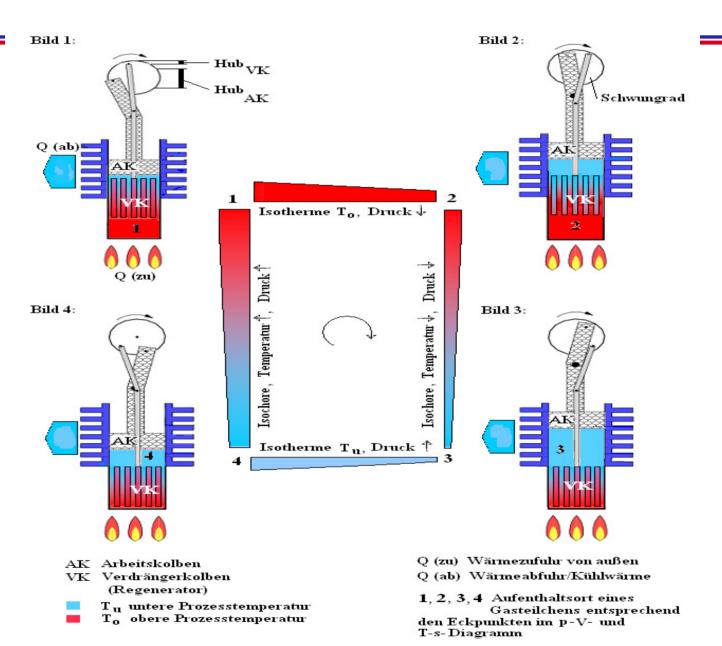
- 1. Einleitung
- 2. Die Sonne als Energiequelle
- 3. Halbleiterphysikalische Grundlagen
- 4. Kristalline pn-Solarzellen
- 5. Elektrische Eigenschaften
- 6. Optimierung von Si-Solarzellen
- 7. Anorganische Dünnschichtsolarzellen
- 8. Third Generation Photovoltaics
- 9. PV-Systemtechnik
 - 9.1 Kennlinienfelder
 - 9.2 Erweiterung des Ersatzschaltbildes
 - 9.3 Solarmodule
 - 9.4 Photovoltaische Anwendungen
 - 9.4 Spannungsanpassung (fortgesetzt)
 - 9.5 MPP-Tracking
 - 9.6 Speicherung
 - 9.7 Wechselrichter
 - 9.8 PV-Kraftwerke


10. Solarthermische Kraftwerke

- 10.1 Einleitung
- 10.2 Konzentration solarer Strahlung
- 10.3 Absorberrohre
- 10.4 Parabolrinnenkraftwerke
- 10.5 Solare Turmkraftwerke
- 10.6 Dish-Stirling-Systeme
- 10.7 Aufwindkraftwerke

Dish-Stirling-Systeme

- typische elektrische Leistung zwischen 5 und 50 kW
- geeignet zur dezentralen solaren Stromerzeugung



- gute Konzentration durch parabolischen Reflektor
- zweiachsige Nachführung

Stirling - Kreisprozess

Funktionsprinzip_{12.42} Stirling-Motor

Stirling V161 Fa. Solo

p=150 bar (He) 650 ℃ 1500 U/min 9-10 kW

Aufbau der Dish-Systeme

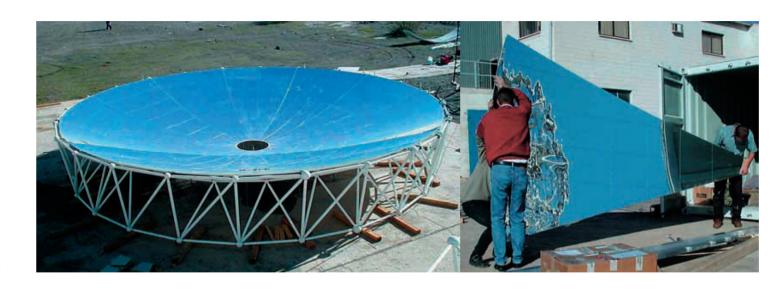
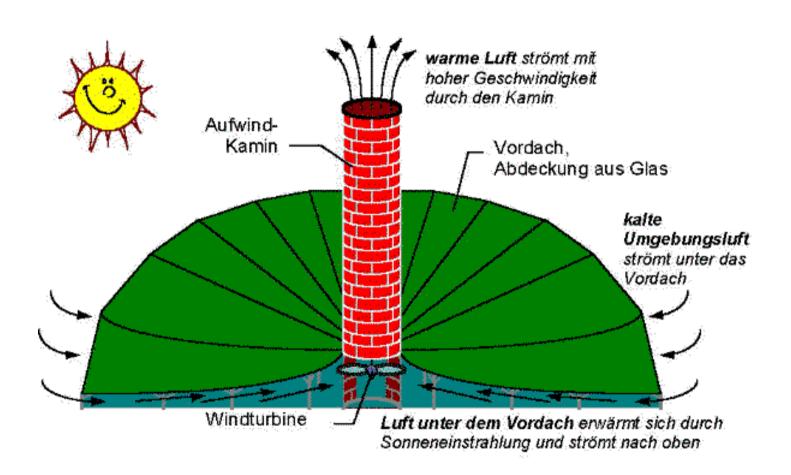


Abbildung 4
Konzentratorschale
und Segmenthandling

Abbildung 5
Drehstand und
Antriebseinheit mit
Servomotor und
Getriebe

Probleme:

- kostengünstige Fertigung
- zu hohe Montagekosten


Übersicht über die Vorlesung Solarenergie

- 1. Einleitung
- 2. Die Sonne als Energiequelle
- 3. Halbleiterphysikalische Grundlagen
- 4. Kristalline pn-Solarzellen
- 5. Elektrische Eigenschaften
- 6. Optimierung von Si-Solarzellen
- 7. Anorganische Dünnschichtsolarzellen
- 8. Third Generation Photovoltaics
- 9. PV-Systemtechnik
 - 9.1 Kennlinienfelder
 - 9.2 Erweiterung des Ersatzschaltbildes
 - 9.3 Solarmodule
 - 9.4 Photovoltaische Anwendungen
 - 9.4 Spannungsanpassung (fortgesetzt)
 - 9.5 MPP-Tracking
 - 9.6 Speicherung
 - 9.7 Wechselrichter
 - 9.8 PV-Kraftwerke

10. Solarthermische Kraftwerke

- 10.1 Einleitung
- 10.2 Konzentration solarer Strahlung
- 10.3 Absorberrohre
- 10.4 Parabolrinnenkraftwerke
- 10.5 Solare Turmkraftwerke
- 10.6 Dish-Stirling-Systeme
- 10.7 Aufwindkraftwerke

Aufwindkraftwerk

Aufwindkraftwerk

Abbildung 3 Prototyp für ein Aufwindkraftwerk in Manzanares Spanien

- bisher ein Versuchskraftwerk mit 100 kW
- 250 m Durchmesser, 2 m Kamindurchmesser, 200 m Höhe
- Windgeschwindigkeiten 9 -15 m/s
- geringer Wirkungsgrad (0.2 %)
- geringe Investitionen
- 1988 nach Kamineinsturz demontiert

Aufwindkraftwerke

Das Aufwind-Kraftwerk benötigt kein Kühlwasser und ist deshalb für den Einsatz in extremen Trockenregionen prädestiniert.

Das Aufwind-Kraftwerk kann auch die diffusen Anteile der Sonnenstrahlung nutzen und funktioniert daher auch bei Bewölkung.

Das Aufwind-Kraftwerk ist besonders zuverlässig und wenig störanfällig.

Wegen der Einfachheit seiner Komponenten kann das Aufwind-Kraftwerk auch in industriell wenig entwickelten Ländern gebaut werden. Die für den Bau von Aufwind-Kraftwerken notwendigen Materialien Beton, Glas und Stahl sind überall in ausreichenden Mengen vorhanden.

Durch den Einbau einfacher thermischer Speicher kann das Aufwind-Kraftwerk als Grundlastkraftwerk rund um die Uhr Strom produzieren.

Quelle: www.solarmillenium.de

Aufwindkraftwerk

Leistung 200 MW

Durchmesser ca. 6.000 m bis 7.000 m

Höhe 1.000 m

Grundfläche max. rund 38 km²

200 MW Aufwindkraftwerk (in Planung ??)

Ort Mildura, Australien

Bauart Aufwindkraftwerk mit Stahlbetonturmröhre und Stahl/GlasLuftsolarkollektor (alternativ mit Kunststoffeindeckung)

Bauherr Enviromission

Schlaich, Bergermann und Partner (www.sbp.de)

Tabelle 7.10 Solarthermische Kraftwerke im Vergleich

				Vergicien	heutige Kosten			künftige Kosten (Serien-Fertig.)		
Solar-Kraft- werks(KW)- Typ	Solarwärme	Umwandlungs-	Wirklungsgrad	Spiegel-Flächen	Kollektor	Investition	Stromgestehung	Kollektor	Investition	Stromgestehung
	[°C]	Wärme Licht	Strom Licht	(30° geogr. Breite)	$\left[\frac{\mathrm{DM}}{\mathrm{m}^2}\right]$	$\left[\frac{\mathrm{DM}}{\mathrm{kW_{el}}}\right]$	$\left[\frac{\mathrm{DM}}{\mathrm{kWh}}\right]$	$\left[\frac{\mathrm{DM}}{\mathrm{m}^2}\right]$	$\left[\frac{\mathrm{DM}}{\mathrm{kW_{el}}}\right]$	$\left[\frac{\mathrm{DM}}{\mathrm{kWh}}\right]$
2-dim. Trog	400	0.6	0.2	$1 \mathrm{km}^2$ $200 \mathrm{MW}_{peak}$ 7 bis 10 h/Tag 3 h/Tag über WSP	700	6 200	0.35	500	5 000	0.20
3-dim. Heliostat (Turm-KW)	800	0.7	0.35	0.5 km ² 200 MW _{peak} sonst wie Trog	350	9 000	0.50	150		
				$1.7\mathrm{km^2}$ $200\mathrm{MW}_{peak},\mathrm{WSP}$ $24\mathrm{h/Tag}$	(350)			(150)	4700	0.14
3-dim. Parabol- Schüssel ("Dish")	650	0.6	0.2	ca. $50 \mathrm{m}^2$ $10 \mathrm{kW}_{el}$ $8 \mathrm{m} \phi$ 7-10 h/Tag o. WSP (Einzel-Schüssel-Anl.)	600	13 000	1	230	3 800	0.26
Aufwind-KW	ca. 40		0.01	$20 \mathrm{km}^2$ $200 \mathrm{MW}_{peak}$ o. WSP ca. 12 h/Tag	<u></u>	4 000?	0.15?			
KW = Kraft-W	<i>I</i> a ala			$40\mathrm{km}^2$ $200\mathrm{MW}_{peak}$ m. WSP $24\mathrm{h/Tag}$	_	?	?		,	

KW = Kraft-Werk WSP = Wärme-Speicher

Quelle: Heinloth 1997